Titre : | Development of an Interactive VR Platform for Cardiac Anatomy Education |
Auteurs : | MOHAMED DJIHAD BENZEID, Auteur ; Mohamed Chaouki Babahenini, Directeur de thèse |
Type de document : | Mémoire magistere |
Editeur : | Biskra [Algérie] : Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, 2025 |
Format : | 1 vol. (77 p.) / ill.couv.ill.encoul / 30cm |
Langues: | Anglais |
Langues originales: | Anglais |
Résumé : |
Traditional anatomy education methods, such as cadaveric dissection and lectures, face inherent limitations including accessibility constraints, high costs, and challenges in effectively conveying complex three-dimensional relationships within the human body. This project explores the potential of Virtual Reality (VR) as a transformative pedagogical tool to address these limitations, focusing specifically on human heart anatomy. The developed application, VitaCor, is an interactive VR platform designed to provide an immersive, hands-on learning experience. Leveraging industry-standard tools including Unity, Blender, and Visual Studio, the project successfully created a functional prototype featuring a detailed 3D heart model. Users can interact with the model through intuitive actions such as grabbing, rotating, and performing virtual dissections, enabling a deeper understanding of internal structures and spatial relationships.The technical realization demonstrates the feasibility of creating a robust, user-friendlyVR environment for complex medical learning. The project highlights the significant pedagogical value of this immersive approach in enhancing spatial understanding, improvinglearning engagement, and providing a risk-free environment forexploration.Furthermore, this initiative aligns with national digital strategies, such as Algeria’sDigital 2030 vision, underscoring its potential for scalable implementation in educational institutions, particularly in resource-limited settings. While the current version focuses oncardiac anatomy and serves as a foundational prototype, the project successfully demonstrates the power of VR to revolutionize anatomy education and lays the groundwork for future advancements in immersive medical training applications. |
Sommaire : |
Abstract List of Figures IV Introduction 1 1 Theoretical Background 3 1 Virtual Reality (VR): Concepts and Evolution . . . . . . . . . . . . . . . . 3 1.1 Definition of Virtual Reality . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Historical Development of VR . . . . . . . . . . . . . . . . . . . . . 3 1.3 Key Components of a VR System . . . . . . . . . . . . . . . . . . . 5 1.3.1 Hardware Components . . . . . . . . . . . . . . . . . . . . 6 1.3.2 Software Components . . . . . . . . . . . . . . . . . . . . 7 1.3.3 Human Sensory and Perception Considerations . . . . . . 7 2 The Metaverse: Expanding Digital Realities . . . . . . . . . . . . . . . . . 8 2.1 Defining the Metaverse . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Metaverse vs Virtual Reality . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Core Technologies of the Metaverse . . . . . . . . . . . . . . . . . . 9 3 Immersion and Presence in Virtual Environments . . . . . . . . . . . . . . 11 3.1 Immersion: Technical and Psychological . . . . . . . . . . . . . . . 11 3.2 Presence: The Illusion of Non-Mediation . . . . . . . . . . . . . . . 12 3.3 Embodiment in VR . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Immersive Technologies in Medical Training 14 1 Virtual Reality in Anatomy Education . . . . . . . . . . . . . . . . . . . . 14 1.1 Traditional Methods of Anatomy Education . . . . . . . . . . . . . 14 1.1.1 Cadaveric Dissection . . . . . . . . . . . . . . . . . . . . . 14 1.1.2 Lecture-Based Instruction . . . . . . . . . . . . . . . . . . 15 1.2 The Role of VR in Anatomy Learning . . . . . . . . . . . . . . . . 16 1.2.1 Immersive Experience . . . . . . . . . . . . . . . . . . . . 16 1.2.2 Interactive Anatomy Exploration . . . . . . . . . . . . . . 17 1.2.3 Access to Rare Structures . . . . . . . . . . . . . . . . . . 17 1.3 Benefits of VR in Anatomy Education . . . . . . . . . . . . . . . . 17 1.3.1 Enhanced Engagement and Retention . . . . . . . . . . . 18 1.3.2 Safe Environment for Practice . . . . . . . . . . . . . . . . 19 1.3.3 Personalization and Accessibility . . . . . . . . . . . . . . 19 1.4 Challenges and Limitations of VR in Anatomy Education . . . . . . 19 1.4.1 Cost Barriers . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5 Future Directions in VR Anatomy Education . . . . . . . . . . . . 20 1.5.1 AI-Enhanced VR Learning Systems . . . . . . . . . . . . . 21 1.5.2 Collaborative Immersive Learning . . . . . . . . . . . . . . 21 1.5.3 Advanced Visualization Platforms . . . . . . . . . . . . . . 22 2 Contextualizing the Metaverse in Algeria: A National Vision . . . . . . . . 23 2.1 The New Saïda Metaverse Project (ESIMAM) . . . . . . . . . . . . 24 2.2 Cultural and Educational Innovation . . . . . . . . . . . . . . . . . 24 3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Design, Implementation and Technical Realization 26 1 Design Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.1 Student Needs and Learning Goals . . . . . . . . . . . . . . . . . . 28 1.2 Research and Learning from Existing Works . . . . . . . . . . . . . 28 1.3 Our Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.3.1 High-Quality 3D Heart Model and Interactive Features . . 29 1.3.2 Interactive Features . . . . . . . . . . . . . . . . . . . . . 30 1.3.3 Animations for Enhanced Understanding . . . . . . . . . . 30 1.3.4 Why These Features Were Chosen . . . . . . . . . . . . . 31 1.3.5 What We Were Able to Achieve . . . . . . . . . . . . . . . 31 2 Implementation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1 Hardware Environment . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Software Tools Used . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.1 Unity - Game Engine and VR Development Platform . . . 33 2.2.2 Blender - 3D Modeling and Asset Preparation . . . . . . . 34 2.2.3 Visual Studio - Integrated Development Environment . . . 34 2.3 VR Environment Setup in Unity . . . . . . . . . . . . . . . . . . . . 34 2.3.1 Scene Assembly and Lighting . . . . . . . . . . . . . . . . 36 2.3.2 Physics and Spatial Layout . . . . . . . . . . . . . . . . . 37 2.3.3 Camera Configuration . . . . . . . . . . . . . . . . . . . . 37 2.3.4 XR Management . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.5 Ensuring Comfort for the User . . . . . . . . . . . . . . . 38 2.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4 Development Workflow and Tool Integration . . . . . . . . . . . . . 39 2.4.1 Use Case-Driven Implementation . . . . . . . . . . . . . . 39 2.4.2 Coding Interactive Logic . . . . . . . . . . . . . . . . . . . 40 2.4.3 Educational Design Integration . . . . . . . . . . . . . . . 40 2.4.4 Testing and Refinement . . . . . . . . . . . . . . . . . . . 41 2.4.5 Summary and Reflection . . . . . . . . . . . . . . . . . . . 41 3 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1 Overview of the Final Application . . . . . . . . . . . . . . . . . . . 42 3.2 VitaCor Exprience . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.1 A First Look at VitaCor: Heart Anatomy in VR . . . . . 43 3.2.2 Interacting With The Heart . . . . . . . . . . . . . . . . . 46 3.3 Delivered Functionalities . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4 Educational Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 Unrealized Features and Development Gaps . . . . . . . . . . . . . 51 4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 General Conclusion 53 Future work 54 Bibliography 55 |
Type de document : | Mémoire master |
Disponibilité (1)
Cote | Support | Localisation | Statut |
---|---|---|---|
MINF/954 | Mémoire master | bibliothèque sciences exactes | Consultable |