Titre : | Stability issue in perovskite solar cells : Comparison between Conventional and Inverted Structures |
Auteurs : | Slim Sara, Auteur ; Afak Meftah., Directeur de thèse |
Type de document : | Monographie imprimée |
Année de publication : | 2025 |
Format : | 1 vol. (56p.) |
Langues: | Anglais |
Langues originales: | Anglais |
Mots-clés: | SCAPS, perovskite solar cell, stability issues, efficiency, defects. |
Résumé : |
In this work, the Solar Cell Capacitance Simulator (SCAPS) was used to investigate stability
issues in perovskite solar cells (PSCs) with both P-I-N and N-I-P structures. The focus was on elucidating the impact of various types of defects caused by degradation processes related to illumination, thermal, and bias stresses, and on comparing the degradation severity in both structures. The defects (electron and hole deep and shallow traps) are created in the HTL/bulk interface, bulk, and bulk/ETL interface. The findings highlighted the critical influence of defect density on key performance metrics such as open-circuit voltage (Voc ), short-circuit current density (Jsc ), fill factor (FF), and power conversion efficiency (PCE). Initially, theN-I-P structure exhibited a slight performance advantage (22.72%) due to a higher open-circuit voltage; 1.180 V vs. 1.145 V in P-I-N (22.41%). The initial electrical outputs prior to degradation showed good agreement with the experimental measurements for both structures. Under extreme defect conditions (bulk defects induced by thermal stress NR=NDA= NDT =NAT =1016 cm−3), the N-I-P structure experienced a catastrophic drop in PCE to 2.430% , while the P-I-N structure maintained, under the similar condition,a PCE of 13.175%. These results suggest that P-I-N structures exhibit better defect tolerance, making them more suitable for long-termstability in defect-prone conditions. |
Sommaire : |
Dedications ii
Acknowledgments iii Abstract iv List of Figures x List of Tables xii List of Abbreviations xiii Introduction 1 1 PerovskiteMaterials: Advances in Solar Cell Technology 3 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Fundamentals of PerovskiteMaterials . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Fabrication Techniques and Processing . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Perovskite Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.1 Mesoporous Scaffold Architecture . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.2 Planar Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.3 ETL and HTLmaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.4 Electrical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Advancements and Challenges in Perovskite Solar Cells . . . . . . . . . . . . . . 10 1.5.1 PSCModules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5.2 Tandem Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Stability Issues In Perovskite Solar cells 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Major Stability Issues in Perovskite Solar Cells . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Environmental Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1.1 Humidity and Oxygen . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1.2 Light Induced Degradation . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1.3 Temperature Induced Degradation . . . . . . . . . . . . . . . . . 17 vi 0 2.2.2 Structural Instability and IonMigration . . . . . . . . . . . . . . . . . . . . 20 2.2.2.1 Hole Transport Layer . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2.2 Metal Counter Electrode . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2.3 Effect of Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.2.4 Bias Voltage-Induced Degradation . . . . . . . . . . . . . . . . . 23 2.2.3 Lead Leaching Toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Alternative StableMaterials for Perovskites . . . . . . . . . . . . . . . . . . . . . . 26 2.3.1 Mixed-Halide Perovskites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Engineering Techniques for Stability Enhancement . . . . . . . . . . . . . . . . . 27 2.4.1 Encapsulation Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.2 Interfacial Engineering for efficiency and stability . . . . . . . . . . . . . . 28 3 Defects in Perovskite Solar Cells and Passivation Strategies 29 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Defects in MAPbI3 Perovskite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 DefectMigration and Device Stability . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 Passivation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4.1 Passivation of Defects in Perovskite Films . . . . . . . . . . . . . . . . . . . 35 3.4.1.1 Ionic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4.1.2 OrganicMolecules . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4.2 Passivation of Defects on the Surface of Perovskite . . . . . . . . . . . . . 36 3.4.2.1 Perovskite/Hole Transport Layer Interface . . . . . . . . . . . . . 37 3.4.2.2 Electron/Perovskite Transport Layer Interface . . . . . . . . . . . 37 4 Stability issue- Comparison between P-I-N and N-I-P PSCs 38 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 SCAPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.1 Definition of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.2 Define the working point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.3 Selection of the measurement(s) to simulate . . . . . . . . . . . . . . . . . 40 4.2.4 Starting the calculation(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.5 Displaying the simulated curves . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3 Material inputs and defects used to simulate the working condition . . . . . . . 42 4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4.1 Initial case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4.2 Effect of defects at the HTL/bulk interface . . . . . . . . . . . . . . . . . . 45 4.4.3 Effect of defects in the bulk . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4.4 Effect of defects at Bulk/ETL interface . . . . . . . . . . . . . . . . . . . . . 51 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 vii 0 Conclusion 55 Bibliography 56 |
Disponibilité (1)
Cote | Support | Localisation | Statut |
---|---|---|---|
MPHY/663 | CDROM | bibliothèque sciences exactes | Consultable |