Titre : | Study of organic solar cells based on wide band gap semiconductor/perovskite hetero-junction |
Auteurs : | Barkat Sarra, Auteur ; Afak Meftah., Directeur de thèse |
Type de document : | Thése doctorat |
Editeur : | Biskra [Algérie] : Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, 2024 |
Format : | 1 vol. (99 p.) |
Langues: | Anglais |
Mots-clés: | CH3NH3PbI3, Cs2BiAgI6, HTL, ETL, SILVACO-ATLAS, Cellules solaires en pérovskite. |
Résumé : |
This thesis focuses on enhancing the efficiency of solar cells by utilizing perovskite materials, specifically two different perovskite Cesium silver bismuth iodide (Cs2BiAgI6) and methyl ammonium lead triiodide (MAPbI3). Through meticulous investigation and analysis, the aim is to advance solar cell technology. The performance of solar cells based on different structures of Cs2BiAgI6 and MAPbI3 is simulated using Silvaco-ATLAS software to optimize their efficiency. Initially, the study delves into Cs2BiAgI6 solar cells, adjusting various parameters such as the hole transport layer (NiO), electron transport layer (ZnO), and front contact (ITO with SiO2). Significant enhancement in power conversion efficiency (PCE) up to 32:86% is achieved, showcasing the effectiveness of the optimizations. Additionally, a comparative analysis between Cs2BiAgI6 and CH3NH3PbI3 solar cells reveals Cs2BiAgI6’s superior performance with a PCE of 23:02%. This research aims to contribute valuable insights into the properties, efficiency, and stability of these materials,advancing their potential applications in solar energy. |
Sommaire : |
Dédication i Acknowledgments ii Abstract iii Contents iii List of Figures vi List of Tables ix List of Abbreviations x I Introduction 2 I.1 Research aims/objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 I.2 Structure of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 II Perovskite materials in solar cell technology 9 II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 II.2 Overview of organic solar cells . . . . . . . . . . . . . . . . . . . . . . . . . 9 II.3 Wide band gap semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . 11 II.4 Perovskite materials for solar cells . . . . . . . . . . . . . . . . . . . . . . . 12 II.4.1 Overview of perovskite materials in solar cell technology . . . . . . . . 12 II.4.2 Perovskite Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 II.4.2.1 Types of perovskite materials . . . . . . . . . . . . . . . . . 14 II.4.3 Properties of perovskite materials . . . . . . . . . . . . . . . . . . . . 16 II.5 Perovskite Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 II.5.1 Types of perovskite solar cells and their structures . . . . . . . . . . . . 19 II.5.2 Working mechanism of perovskite solar cells . . . . . . . . . . . . . . 22 II.5.2.1 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 II.5.3 Basic parameters and electrical characterization methods . . . . . . . . 26 iiiII.5.3.1 J-V Characteristics of a PV device . . . . . . . . . . . . . . . 26 II.5.4 The advantages and disadvantages of perovskite solar cells . . . . . . . 29 II.5.4.1 The advantages of perovskite solar cells . . . . . . . . . . . . 29 II.5.4.2 The disadvantages of Perovskite solar cell . . . . . . . . . . . 29 II.5.4.3 Comparison of perovskite solar cells with other types of solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 II.6 Fabrication of Perovskite Solar Cells . . . . . . . . . . . . . . . . . . . . . . 31 II.6.1 Vapor deposition method . . . . . . . . . . . . . . . . . . . . . . . . . 32 II.6.2 One-step and two-step solution-based methods . . . . . . . . . . . . . 32 II.6.2.1 One-step solution-based method . . . . . . . . . . . . . . . . 32 II.6.2.2 Two-step solution-based method . . . . . . . . . . . . . . . . 33 II.6.3 Hybrid process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 II.7 Potential Applications of PSCs . . . . . . . . . . . . . . . . . . . . . . . . . 33 II.8 Previous research on perovskite solar cells . . . . . . . . . . . . . . . . . . . 34 II.9 Challenges and opportunities in the implementation of perovskite solar cells 35 II.9.1 Long-term stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 II.9.1.1 Progress in humidity stability . . . . . . . . . . . . . . . . . 36 II.9.1.2 Oxygen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 II.9.1.3 Thermal Stability . . . . . . . . . . . . . . . . . . . . . . . . 39 II.9.1.4 UV-irradiance effect . . . . . . . . . . . . . . . . . . . . . . 39 II.9.1.5 J-V hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . 40 III Numerical Simulation by Silvaco-Atlas 45 III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 III.2 SILVACO-ATLAS Simulation Tool . . . . . . . . . . . . . . . . . . . . . . . 46 III.2.1 Overview and Features . . . . . . . . . . . . . . . . . . . . . . . . . . 46 III.2.2 Device Simulation Capabilities . . . . . . . . . . . . . . . . . . . . . . 47 III.2.3 Device Physics and Models . . . . . . . . . . . . . . . . . . . . . . . . 48 III.2.3.1 Poisson’s Equation . . . . . . . . . . . . . . . . . . . . . . . 48 III.2.3.2 Carrier Continuity Equations . . . . . . . . . . . . . . . . . . 48 III.2.3.3 The Transport Equations . . . . . . . . . . . . . . . . . . . . 49 III.3 ATLAS Simulation Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 49 III.3.1 Device and Process Simulation Setup . . . . . . . . . . . . . . . . . . 50 III.3.1.1 Structure Specification . . . . . . . . . . . . . . . . . . . . . 50 III.3.1.2 Materials Model Specification . . . . . . . . . . . . . . . . . 55 III.3.1.3 Choosing Numerical Methods . . . . . . . . . . . . . . . . . 58 III.3.1.4 Interpreting results . . . . . . . . . . . . . . . . . . . . . . . 60 ivIII.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 IV Results and discussion 63 IV.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 IV.2 Part 1: Study of Cs2BiAgI6 double perovskite solar cell . . . . . . . . . . . 65 IV.2.1 Solar cell structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 IV.2.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 68 IV.2.2.1 Primary optimized devices . . . . . . . . . . . . . . . . . . . 68 IV.2.2.2 Effect of Changing HTL . . . . . . . . . . . . . . . . . . . . 69 IV.2.2.3 Effect of Cs2BiAgI6 thickness for different ETL materials: . . 72 IV.2.2.4 Effect of doping concentration of HTL . . . . . . . . . . . . 75 IV.2.2.5 Effect of doping concentration of ETL . . . . . . . . . . . . 76 IV.2.2.6 Effect of ITO work-function . . . . . . . . . . . . . . . . . . 77 IV.2.2.7 Effect of Back contact . . . . . . . . . . . . . . . . . . . . . 77 IV.2.2.8 Effect of antireflective layer . . . . . . . . . . . . . . . . . . 79 IV.2.2.9 Comparison between the inverted and conventional structure . 80 IV.3 Part 2: Exploring Gallium Oxide’s functions in advancing the efficiency of CH3NH3PbI3 perovskite solar cells: electron transport, transparency Enhancement, UV and hole Blocking. . . . . . . . . . . . . . . . . . . . . . 81 IV.3.1 Solar cell structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 IV.3.2 Choice of b-Ga2O3 as electron transport layer . . . . . . . . . . . . . . 84 IV.3.3 Selecting Cu2O/Si Bilayer for hole extraction and electron barrier . . . 84 IV.3.4 Perovskite and b-Ga2O3 thickness effect . . . . . . . . . . . . . . . . . 86 IV.3.5 Influence of traps associated with perovskite material . . . . . . . . . . 88 IV.3.6 b-Ga2O3 related traps effect . . . . . . . . . . . . . . . . . . . . . . . 90 IV.3.7 Impact of traps associated with Cu2O . . . . . . . . . . . . . . . . . . 92 IV.3.8 Temperature effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 IV.3.9 Effect of Biomolecular recombination rate (A. Langevin): . . . . . . . . 95 IV.4 Comparison of Cs2BiAgI6 results with CH3NH3PbI3 . . . . . . . . . . . . . 97 IV.5 Results of SILVACO-ATLAS Compared to Earlier Research . . . . . . . . 99 IV.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Conclusion 102 |
En ligne : | http://thesis.univ-biskra.dz/id/eprint/6701 |
Disponibilité (1)
Cote | Support | Localisation | Statut |
---|---|---|---|
TPHY/145 | Théses de doctorat | bibliothèque sciences exactes | Consultable |