Titre : | Study of instability issue in perovskite solar cell |
Auteurs : | SALSABIL ANGAR, Auteur ; Afak Meftah., Directeur de thèse |
Editeur : | Biskra [Algérie] : Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, 2024 |
Format : | 1VOL.(70p) / ill.couv.ill.en coul / 30cm |
Langues: | Anglais |
Langues originales: | Anglais |
Mots-clés: | Keywords: instability issues, perovskite solar cells, SCAPS-1D, interfaces, defects, cell efficiency |
Résumé : |
Our study investigates instability issues in TiO2− MAPbI3− Spiro− OMeTED (n-i-p type) perovskite solar cells using SCAPS-1D numerical simulation software. The current-voltage density characteristics (J-V) and key photovoltaic output parameters, including short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficiency (PCE) are calculated. The work focuses on the impact of defects induced by degradation factors such as prolonged illumination, UV radiation, corrosion, oxidation, and humidity. These defects, namelyNR (recombination center),NDP (deep donor), NDT (shallow donor), and NAT (shallow acceptor), are identified based on previous research. The possible defect locations, are at the interfaces; between the electron transport layer (ETL) and perovskite or the hole transport layer (HTL) and perovskite, as well as within the bulk perovskite layer. Initial electrical parameters are in agreement with wide range of experimental values, with Jsc=22.92mA/cm2, Voc=1.184V, FF=83.67%, and PCE=22.72%. However, high-density defects in the bulk layer (all 1016cm−3) have the most significant impact, reducing PCE to 2.43%. Defects at the ETL/perovskite interface, with a surface density of 1014cm−2, lower PCE to 16.61%, while defects at the perovskite/HTL interface result in a smaller decrease of PCE down to 21.73%. These defects were associated, respectively, to thermal stress, illumination and hysteresis effects. The introduction of a PbS buffer layer at HTL/bulk interface has improved considerably the electrical outputs degradation, mainly that related to bulk defects |
Sommaire : |
Dedication i Acknowledgement ii Abstract i List of Abbreviations xiii Introduction 1 1 An Overview on perovskite solar cells 4 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 History of perovskite solar cells . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Single junction perovskite solar cells . . . . . . . . . . . . . . . . . 5 1.2.2 Multi-junction/ tandem perovskite solar cells. . . . . . . . . . . . . 6 1.3 Structure of perovskite materials . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Properties and chemical nature . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Mechanistic processes in perovskite solar cell . . . . . . . . . . . . . . . . . 11 1.6 Device architecture of single junction perovskite solar cells . . . . . . . . . 12 1.6.1 Electron transport layer (ETL) . . . . . . . . . . . . . . . . . . . . 13 1.6.1.1 Inorganic ETLs . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6.1.2 Organic ETLs . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6.2 Hole transport layer (HTL) . . . . . . . . . . . . . . . . . . . . . . 13 1.6.2.1 Inorganic HTLs . . . . . . . . . . . . . . . . . . . . . . . . 14 1.6.2.2 Organic HTLs . . . . . . . . . . . . . . . . . . . . . . . . 14 1.6.2.3 Polymeric HTLs . . . . . . . . . . . . . . . . . . . . . . . 15 1.6.3 Perovskite thin film absorber layers . . . . . . . . . . . . . . . . . . 15 1.6.3.1 Vapor deposition method . . . . . . . . . . . . . . . . . . 16 1.6.3.2 One-step and two-step solution based methods . . . . . . 16 1.7 Compositional engineering to perovskite solar cells . . . . . . . . . . . . . . 17 1.7.1 Monovalent cation replacement . . . . . . . . . . . . . . . . . . . . 18 1.7.2 Divalent cation replacement . . . . . . . . . . . . . . . . . . . . . . 18 1.7.3 Anion/halide replacement . . . . . . . . . . . . . . . . . . . . . . . 19 2 Instability issue in perovskite solar cells 23 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Research progress in the stability of PSCs . . . . . . . . . . . . . . . . . . 24 2.2.1 Stability against moisture-induced degradation . . . . . . . . . . . . 24 2.2.2 Stability against thermal-induced degradation . . . . . . . . . . . . 28 2.2.3 Stability against UV light-induced degradation . . . . . . . . . . . . 33 2.3 Tandem junction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 Factors affecting the performance of perovskite solar cells and possible solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.1 Thermal instability in the perovskite solar cells . . . . . . . . . . . 36 2.4.2 Moisture and Oxygen driven degradation . . . . . . . . . . . . . . . 36 2.4.3 Toxicity of Lead-based perovskite solar cells . . . . . . . . . . . . . 37 2.4.4 Bias-dependent degradation of perovskite solar cells . . . . . . . . . 37 2.4.5 Role of additives in the perovskite solar cells . . . . . . . . . . . . . 38 2.4.6 Role of interfaces/contacts in the perovskite solar cells . . . . . . . 38 2.4.7 Degradation of perovskite solar cells under illumination . . . . . . . 38 3 Study of instability issue by SCAPS 46 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 SCAPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.1 Definition of the problem . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.2 Define the working point . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.3 Selection of the measurement(s) to simulate . . . . . . . . . . . . . 48 3.2.4 Starting the calculation(s) . . . . . . . . . . . . . . . . . . . . . . . 49 3.2.5 Displaying the simulated curves . . . . . . . . . . . . . . . . . . . . 49 3.3 Defects in perovskite-halide materials . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Compositional engineering . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.2 Defects in perovskite . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4.1 Initial case with low defect density . . . . . . . . . . . . . . . . . . 55 3.4.2 Effect of defects at ETL/Bulk interface . . . . . . . . . . . . . . . . 57 3.4.3 Effect of defects in bulk-Perovskite . . . . . . . . . . . . . . . . . . 59 3.4.4 Effect of defects at Perovskite/HTL interface . . . . . . . . . . . . . 61 3.5 PbS buffer layer to reduce instability-induced defects effect . . . . . . . . . 62 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Conclusion 68 Abstract 70 |
Type de document : | Mémoire master |
Disponibilité (1)
Cote | Support | Localisation | Statut |
---|---|---|---|
MPHY/641 | Mémoire master | bibliothèque sciences exactes | Consultable |