Titre : | Study of CH3NH3PbI3 perovskite-based solar cells performance |
Auteurs : | Hanane Mebarki, Auteur ; widad Laiadi, Directeur de thèse |
Editeur : | Biskra [Algérie] : Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, 2024 |
Format : | 1.VOL.(53p) / ill.couv.ill.en coul / 30cm |
Langues: | Anglais |
Langues originales: | Anglais |
Résumé : |
The promising technology of CH3NH3PbI3 perovskite solar cells is particularly interested in increasing efficiency. Solar cells based on perovskite represent an innovative approach to achieve the best possible photovoltaic performances. The main objective of this work is to study the performance of CH3NH3PbI3 perovskite-based solar cells, using the SILVACO software. In this work, we examined the electrical characteristics (I-V) of the primary modelled solar cell, and The electrical outputs of the primary PSC solar cell obtained are the short-circuit current density Jsc, the open-circuit voltage Voc, the fill factor FF and the conversion efficiency η are 21.33 mA/cm2, 0.88 V, 0.72 and 14.44 %, respectively, agree with experimental data. On the other hand, the simulation enabled us to study the effect of the ETM region thickness, the effect of HTM region thickness and the last effect which is the replacing of the HTM region (Spiro-OMeTAD) with PEDOT: PSS on the electrical characteristics of the perovskite solar cell. Through the obtained results we noticed that the PEDOT: PSS material improved the characteristics (I-V) of the perovskite solar cell and the optimum parameters of the thickness of ETL and HTL layers which are 0.1 µm, in the two cases. the obtained output parameters of the solar cell improved in the case of the optimum thickness of ETL are Jsc= 27.91 mA/cm2, Voc= 0.88 V, FF= 0.72 and η= 17.71% While in the case of the optimum thickness of HTL are Jsc= 27.2 mA/cm2, Voc= 0.88 V, FF= 0.72 and η= 17.61%. |
Sommaire : |
Table of contents…………………………………………………………………………...….i Dedication…………………………………………………………………………………….iii Knowledgemets……………………………………………………………………………….iv Abstract………………………………………………………………………………………..v List of figures………………………………………………………………………….………vi List of tables……………………………………………………………………………........viii List of abbreviations……………………………………………………………….…………ix Introduction…………………………………………………………………………………...2 Chapter I: General Concepts of Solar Cells I.1 Introduction…………………………………………………………………………………5 I.2 Absorption of light…………………………………………………………………………..5 I.3 The solar spectrum…………………………………………………………………………..7 I.4 Semiconductors……………………………………………………………………………..8 I.5 Different types of doping……………………………………………………………………9 I.5.1 N-doped semiconductors………………………………………………………………….9 I.5.2 P-doped semiconductors………………………………………………………..………..10 I.6 PN Junction………………………………………………………………………………..10 I.7 Solar cell…………………………………………………………………………………...13 I.8 Characteristic parameters of a photovoltaic cell…………………………………………...14 I.8.1 Short circuit current Isc……….………………………………………………………….15 I.8.2 Open circuit voltage in Voc….…………………………………………………………...16 I.8.3 Fill factor FF…….……………………………………………………………………….16 I.8.4 Energy conversion efficiency ɳ…………………………………………………………..17 Chapter II : CH3NH3PbI3 Perovskite solar cells II.1 Introduction……………………………………………………………………………….19 II.2 CH3NH3PbI3 perovskite structure………………………………………..……………….19 II.3 Perovskite solar cell……………………………………………………………………….20 II.3.1 General Structure of Perovskite Solar Cells II.4 Device architecture………………………………………………………………………..22 II.5 Electron-transporting layer-free structure………………………………………………...25 II.6 Hole transporting layer-free structure……………………………………………………..26 II.7 Power conversion efficiency at scale of perovskite solar cells…………………………….28 II.8 Stability and durability of Perovskite Solar Cells…………………………………………29 Chapter III: Results and discussion III.1 Introduction………..…………………………………………………………………….32 III.2 Features and Capabilities of ATLAS……………………………………………………..32 III.2.1 Comprehensive Set of Models………………….……………………………………...32 III.2.2 Fully Integrated Capabilities…….……………………………………………………..33 III.2.3 Sophisticated Numerical Implementation……………….……………………………..34 III.3 Using ATLAS with Other Silvaco Software……………………………………………...34 III.4 Physically-Based Simulation…………………………………………………………….35 III.5 ATLAS Inputs and Outputs………………………………………………………………36 III.6 ATLAS Syntax…………………………………………………………………………...37 III.6.1 Statements and Parameters……………………………………………………………..37 III.7 CH3NH3PbI3 -based perovskite solar cells structure………………………..……………38 III.8 (I-V) Characteristic of primary modelled solar cell………………………………………40 III.9 Effect of ETL (TiO2) region thickness…………………………………………………...41 III.10 Effect of HTL (Spiro-OMeTAD) region thickness……………………………………..44 III.11 Effect of replacing a Spiro-OMeTAD by PEDOT: PSS material……………………….47 III.12 Conclusion……………………………………………………………………………...49 General Conclusion………...…………………………………………………………...…...51 References………………..…………………………………………………………………..53 |
Type de document : | Mémoire master |
Disponibilité (1)
Cote | Support | Localisation | Statut |
---|---|---|---|
MPHY/650 | Mémoire master | bibliothèque sciences exactes | Consultable |