Titre : | Nanoelectrochemistry |
Auteurs : | V. Mirkin Michael, Auteur ; Amemiya Shigeru, Auteur |
Type de document : | Monographie imprimée |
Mention d'édition : | 1er édition |
Editeur : | CRC Press Editeur, 2015 |
ISBN/ISSN/EAN : | 978-1-138-89466-2 |
Format : | 1 vol. (863 p.) / couv. ill. en coul / 25 cm |
Langues: | Anglais |
Langues originales: | Anglais |
Résumé : |
Nanoscale electrochemistry has revolutionized electrochemical research and technologies and has made broad impacts in other fields, including nanotechnology and nanoscience, biology, and materials chemistry. Nanoelectrochemistry examines well-established concepts and principles and provides an updated overview of the field and its applications. This book covers three integral aspects of nanoelectrochemistry. The first two chapters contain theoretical background, which is essential for everyone working in the field—specifically, theories of electron transfer, transport, and double-layer processes at nanoscale electrochemical interfaces. The next chapters are dedicated to the electrochemical studies of nanomaterials and nanosystems, as well as the development and applications of nanoelectrochemical techniques. Each chapter is self-contained and can be read independently to provide readers with a compact, up-to-date critical review of the subfield of interest. At the same time, the presented collection of chapters serves as a serious introduction to nanoelectrochemistry for graduate students or scientists who wish to enter this emerging field. The applications discussed range from studies of biological systems to nanoparticles and from electrocatalysis to molecular electronics, nanopores, and membranes. The book demonstrates how electrochemistry has contributed to the advancement of nanotechnology and nanoscience. It also explores how electrochemistry has transformed itself by leading to the discovery of new phenomena, enabling unprecedented electrochemical measurements and creating novel electrochemical systems. |
Sommaire : |
Theory of Nanoelectrochemistry Electron Transfer in Nanoelectrochemical Systems; G.J. Soldano, W. Schmickler, M.F. Juarez, P. Quaino, and E. Santos Electrochemical Double-Layer Effects on Electron Transfer and Ion Transport at the Nanoscale; Wen-Jie Lan, Henry S. White, and Shengli Chen Nanoelectrochemical Systems Electrochemistry of Monolayer-Protected Clusters; Tessa M. Carducci and Royce W. Murray Platinum-Monolayer Oxygen-Reduction Electrocatalysts: Present Status and Future Prospects; Radoslav R. Adzic and Kuanping Gong Photoelectrochemistry with Nanostructured Semiconductors; Wen Wen and Stephen Maldonado Single-Molecule Nanoelectronics; Stuart Lindsay Electron Transport and Redox Reactions in Solid-State Molecular Electronic Devices; Richard McCreery Stochastic Events in Nanoelectrochemical Systems; Allen J. Bard, Aliaksei Boika, Seong Jung Kwon, Jun Hui Park, and Scott N. Thorgaard Nanoelectrochemistry of Carbon; Jacob M. Goran and Keith J. Stevenson Template-Directed Controlled Electrodeposition of Nanostructure and Composition; Jonathon Duay and Sang Bok Lee Nanopores and Nanoporous Membranes; Alicia K. Friedman and Lane A. Baker Recent Investigations of Single Living Cells with Ultramicroelectrodes; Christian Amatore, Manon Guille-Collignon, and Frédéric Lemaître Nanobioelectrochemistry: Proteins, Enzymes, and Biosensors; Gregory W. Bishop and James F. Rusling Electrode Array Probes of Exocytosis at Single-Cell Membranes and Exocytosis Measurements at Cell Biomimetic Systems; Jun Wang and Andrew G. Ewing Nanoelectrochemical Methods Nanoelectrodes and Liquid/Liquid Nanointerfaces; Michael V. Mirkin Microfabricated Electrochemical Systems; Shuo Kang and Serge G. Lemay Electrodeposition at the Nanoscale; Jay A. Switzer Scanning Electrochemical Microscopy of Nanopores, Nanocarbons, and Nanoparticles; Shigeru Amemiya Scanning Electrochemical Cell Microscopy: Mapping, Measuring, and Modifying Surfaces and Interfaces at the Nanoscale; Barak D.B. Aaronson, Aleix G. Güell, Kim McKelvey, Dmitry Momotenko, and Patrick R. Unwin In Situ Atomic Resolution Studies of the Electrode/Solution Interface by Electrochemical Scanning Tunneling Microscopy; Scott N. Thorgaard and Philippe Bühlmann Combined Atomic Force Microscopy–Scanning Electrochemical Microscopy; Christophe Demaille and Agnès Anne Nanoscale Potentiometry; Róbert E. Gyurcsányi and Ernö Pretsch Index |
Disponibilité (2)
Cote | Support | Localisation | Statut |
---|---|---|---|
PHY/872 | Livre | bibliothèque sciences exactes | Empruntable |
PHY/872 | Livre | bibliothèque sciences exactes | Empruntable |