Titre : | Contribution to the study and simulation prediction of the physical properties of new energetic nanomaterials: Applications to Dye Sensitized Solar Cells |
Auteurs : | Adel Daoud, Auteur ; Ali Cheknane, Directeur de thèse ; Afak Meftah., Directeur de thèse |
Type de document : | Monographie imprimée |
Editeur : | Biskra [Algérie] : Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, 2023 |
Format : | 1 vol. (161 p.) / couv. ill. en coul / 30 cm |
Langues: | Anglais |
Résumé : |
The primary goal of this thesis is to conceive, and design novel interfaces based on porous electrode ZnTiO3 with three kinds of dyes, Quinoxaline derivatives, Polyene-diphenyaniline, and Merocyanine-540 dye (MC-540) for nDSSCs applications. Via playing on many components that make it possible to adapt the adsorption energy between the semiconductor and the dyes proposed in our new interfaces. By simulation of the physical properties of the free and adsorbed dyes onto the surface electrode by using the density functional theory and time-dependent (TD-DFT) methods, we studied the effects of hydroxyl group numbers and/or positions on Quinoxaline dyes, the effect of the donor group in polyene-diphenyaniline dyes, and solvation model to enhance DSSCs performance based on solvent polarity and electrolyte type. It was necessary to manufacture one of the devices, which we simulated for comparison, where we used a new strategy by simulation and experimental on the MC-540@ZnTiO3 crucial interface by the sensitization conditions improvement to solve the problem of dye loading on the surface of n-type electrodes through photophysical, photovoltaic, and theoretical calculations. Our results indicated that the ZnTiO3 electrode is a promising alternative to the TiO2 reference electrode to develop photovoltaic components sensitized to dyes in the liquid state. This study demonstrated that the development of n-DSSC devices is not limited to only the strategy of designing new dyes, rather, other aspects can be studied that will enhance performance and reduce recombination (CR), together with the use of environmentally friendly materials. The concordance between the simulation and the experimental results suggests that the TD-DFT methods could be employed as an efficient predictive tool to improve the performance of dye-sensitized solar cells instead of the costlier cyclic voltammetry techniques. |
Sommaire : |
Acknowledgments I Abstract II List of Publications and Statement of Originality III Contents IV List of Tables V List of Figures VI List of Schemes VII List of Abbreviations and Annotations VIII General introduction Chapter I Overview of Dye-Sensitized Solar Cells I.1. Introduction 4 I.2. Photovoltaic Energy 4 I.2.1. Solar Energy 4 I.2.1.1. Solar spectrum 4 I.2.1.2. Exploitation of Solar Energy 6 I.2.1.2.1. Thermal Section 6 I.2.1.2.2. Photovoltaic Section 6 I.3. Terminology of "photovoltaic"-Important Dates 7 I.4. Advantages and disadvantages of photovoltaic energy 8 I.4.1. Advantages 8 I.4.2. Disadvantages 8 I.5. Operational principle of photovoltaic cells 9 I.5.1. General Concepts about the Conductor, Semiconductor, and Insulator 9 I.5.2. p-n junction under illumination and photocurrent creation 10 I.6. The physical properties of the photovoltaic cell 10 I.6.1. Equivalent circuit of a photovoltaic cell 10 I.6.2. Photovoltaic properties 12 I.6.2.1. The current-voltage characteristic J(V) of a solar cell 12 I.6.2.1.1. Short-Circuit Current Density 12 I.6.2.1.2. Open circuit potential 12 I.6.2.1.3. Maximum power 12 I.6.2.1.4. Fill Factor (FF) 13 I.6.2.1.5. Power Conversion Efficiency (PCE) 13 I.7. Evolution of technology 14Summary I.7.1. First generation 14 I.7.2. Second generation 14 I.7.3. Third generation 15 I.8. Structures of photovoltaic cells 17 I.9. Organic Photovoltaic (OPV) Cells 18 I.10. Dye-Sensitized solar cells (DSSCs) 19 I.10.1. Main components of the Dye-Sensitized Solar Cell (DSSCs) devices 19 I.10.1.1. Substrate 19 I.10.1.2. Benchmark semiconductors 20 I.10.1.2.1. Porosity 20 I.10.1.2.2. Wide-band gap semiconductors 20 I.10.1.2.2.1. TiO2-based n-DSSCs 20 I.10.1.2.2.2. NiO-based p-DSSCs 21 I.10.1.3. Sensitizer 22 I.10.1.3.1. Alignment of the sensitizer’s molecular levels with the semiconductor conduction band edge (CBE) 22 I.10.1.3.2. Donor, π-Bridge, Acceptor, and Anchoring group design 22 I.10.1.3.3. benchmark dyes for n-DSSCs 22 I.10.1.3.4. benchmark dyes for p-DSSCs 24 I.10.1.4. Redox mediator 27 I.10.1.4.1. Liquid mediator 27 I.10.1.4.2. Solid mediator 27 I.10.1.5. Counter-electrode 27 I.10.2. Deposition methods 28 I.10.2.1. Doctor Blade method 28 I.10.2.2. Spin coater method 29 I.10.2.3. Chemical vapor deposition method "CVD" 30 I.10.2.4. Sputtering method 30 I.10.2.4.1. Sputtering directly method 30 I.10.2.4.2. Reactive sputtering method 30 I.10.2.5. Sol-Gel process method 30 I.10.3. Physical processes of photovoltaic conversion in Dye-Sensitized solar cells (DSSCs) 31 I.10.3.1. n-type Dye-Sensitized solar cells 31 I.10.3.1.1. Operational principle of n-DSSCs 31 I.10.3.1.2. n-SC@dye interface 32 I.10.3.1.2.1. Conventional liquid n-DSSCs devices 32 I.10.3.1.2.2. Solid-state n-ssDSSCs devices 34Summary I.10.3.2. p-type Dye-Sensitized solar cells 35 I.10.3.2.1. Operational principle of p-DSSCs 35 I.10.3.2.2. p-SC@dye interface 37 I.10.3.2.2.1. Conventional liquid p-DSCs devices 37 I.10.3.2.2.2. Solid-state p-ssDSCs devices 38 I.10.3.3. Differences between n-DSSCs and p-DSSCs devices 39 I.10.3.4. Tandem Dye-Sensitized solar cells (t-DSSCs) 39 I.11. Dye-sensitized photo-electrochemical cells (DSPECs) 40 I.11.1. p-SC@dye interface 40 I.11.2. Configuration types to combine a sensitizer with a catalyst in DSPEC devices 41 I.12. Tandem-Dye Sensitized Solar Cell connected to water splitting device (t-DSSC@water splitting) 41 I.13. Advantages of solar cells based on photosensitized oxides 43 I.13.1. Advantages 43 I.13.2. Disadvantages 43 I.14. Conclusion 43 I. References 44 Chapter II The DSSCs: A state of the art-Problems-Strategies-Designs II.1. Introduction 55 II.2. Effect of type of transparent conducting oxide substrate (TCO) 55 II.3. Theory and strategies 56 II.3.1. n-type Dye Sensitizer Solar Cells (n-DSSCs) 56 II.3.1.1. Substitution strategy applied for sensitizers in n-DSSCs 57 II.3.1.1.1. Triphenylamine substitution dyes (TPA) 57 II.3.1.1.2. Triarylamine dyes 59 II.3.1.1.2.1. Fluorene based triarylamine dyes 59 II.3.1.1.2.2. Naphthalene based triarylamine dyes 59 II.3.1.1.3. Indoline dyes 60 II.3.1.1.4. Phenothiazine and phenoxazine dyes 61 II.3.1.1.5. Carbazole dyes 62 II.3.1.1.6. Push–pull porphyrins-based dyes 62 II.3.1.1.6.1. Meso tetraphenyl porphyrins dyes 63 II.3.1.1.6.2. Meso-Diarylamino porphyrins 63 II.3.1.1.7. Acceptor groups 65 II.3.1.1.7.1. Various electron-withdrawing units as an electron acceptors in molecularSummary structures 65 II.3.1.1.7.2. Exploration of new acceptors based on arylamine dyes 66 II.3.1.1.7.3. N,N-dialkylaniline dyes as acceptors units 67 II.3.1.1.8. Steric units substitution strategy 68 II.3.1.1.9. Donor groups 68 II.3.1.1.9.1. Nitro, cyano, methoxy, or dimethylamino phenylethynyl-substituted porphyrin as Donor group 68 II.3.1.1.9.2. Tetrahydroquinoline dyes as donor group 69 II.3.1.1.9.3. Triarylamine-substituted porphyrins 69 II.3.1.1.10. Substitution strategy for anchoring group 70 II.3.1.1.11. Improvement strategy 71 II.3.1.1.11.1. Sensitization conditions improvement 71 II.3.1.1.11.2. Thickness 72 II.3.1.1.12. Co-sensitization strategy 72 II.3.1.1.13. Supramolecular assemblies strategy 73 II.3.1.2. Electrochemical properties and driving force electron-injection 74 II.3.1.2.1. Driving force electron-injection (ΔEinj) 74 II.3.1.2.2. Dye regeneration (ΔEreg) 75 II.3.1.2.3. Quasi-Fermi Level (electron concentration) in the TiO2 electrode 76 II.3.1.3. Iodide/triiodide electrolyte couple 77 II.3.1.3.1. Disadvantages of iodide/triiodide electrolyte couple 77 II.3.1.3.2. Iodide/Triiodide electrolyte substitution strategy 77 II.3.2. p-type Dye Sensitized Solar Cells (p-DSSCs) 78 II.3.2.1. NiO photocathode 78 II.3.2.1.1. Terms of use of NiO photocathode 78 II.3.2.1.2. Disadvantages of NiO photocathode 78 II.3.2.2. Dyes used as sensitizers in p-DSSCs 78 II.3.2.2.1. Recombination reactions nagging in p-DSSCs 78 II.3.2.2.2. Quasi-Fermi Level (Hole Concentration) in the NiO photocathode 80 II.3.2.2.3. Quasi-Fermi level lowering strategy 80 II.3.2.2.3.1. Chemical method 80 II.3.2.2.3.2. Doped method 81 II.3.2.2.3.3. Blocking layer method 81 II.3.2.2.4. Transition-metal complex-based dyes 81 II.3.2.2.5. Exploring new anchoring groups 82 II.3.2.2.6. Porphyrins, phthalocyanines, bodipy, and perylene imide dyes 89 II.3.2.2.7. Push-pull and Squaraine dyes 97Summary II.3.2.3. Charge transfer mechanisms at the level of dye molecules, NiO electrodes, and electrolytes 110 II.4. Conclusion 122 II.5. Problematic of the thesis 123 II. References 123 Chapter III The DFT's Formalization, and Experimental techniques III.1. Introduction 141 III.2. Historical 141 III.3. Schrödinger equation and the many-body problem 141 III.4. Impossibility of solving Schrödinger equation directly 142 III.5. Born-Oppenheimer approximation 143 III.6. Hartree approximation 143 III.6.1. Hartree-Fock approximation 144 III.7. Density functional theory 144 III.7.1. Hohenberg and Kohn theorems 145 III.7.1.1. Theorem 1 145 III.7.1.2. Theorem 2 146 III.8. Kohn and Sham equations 146 III.9. Exchange-Correlation Functionals 147 III.9.1. Local Density Approximation (LDA) 147 III.9.2. Generalized gradient approximation (GGA) 148 III.9.3. Hybrid functionals 148 III.9.3.1. B3LYP functional 148 III.10. Solving Kohn-Sham equations 149 III.11. Choice of the calculation method 150 III.11.1. Pseudopotential 151 III.11.1.1. Pseudopotential (PP) method 151 III.11.1.2. Disadvantages 152 III.11.2. Norm-conserving Pseudopotentials 152 III.11.3. PAW method 153 III.11.4. Bloch’s theorem and plane wave basis sets 153 III.12. Input files and software 154 III.12.1. CASTEP package 154 III.12.1.1. Parameters definition used in the calculation 155 III.12.1.1.1. Cut-off energy 155Summary III.12.1.1.2. Grids of the k points 155 III.12.2. DMol3 package 155 III.12.2.1. Tasks in DMol3 156 III.12.2.2. Structure definition 156 III.12.2.3. Modeling Nano-cluster 157 III.13. Experimental equipment and techniques 158 III.13.1. Optical analysis 158 III.13.1.1. UV-Vis spectrophotometer scanning 158 III.13.1.1.1. UV-Vis spectrophotometer scanning working principle 159 III.13.1.1.2. Measurement conditions 160 III.13.1.2. Fluorescence Excitation Emission Matrix Spectroscopy 160 III.13.1.2.1. Fluorescence Excitation Emission Matrix Spectroscopy working principle 161 III.13.2. FTIR Spectrometer 162 III.13.3. Morphological and Structural properties 164 III.13.3.1. Scanning Electron Microscope (SEM) 164 III.13.3.2. Principle of Scanning Electron Microscope (SEM) 165 III.13.4. Main tools and equipment 167 III.13.5. Semiconductor Characterization System (SCS) 168 III.14. Conclusion 168 III. References 169 Chapter IV Simulation, Experimental, and Discussion the Results IV.1. Introduction 172 IV.2. Energy levels alignment at n-DSSCs interface 172 IV.3. Computational details 173 IV.3.1. ZnTiO3 electrode 173 IV.3.2. Modeling Zinc titanate (ZnTiO3)8 nanocluster 174 IV.3.3. Geometry optimization and input parameters of the dyes 174 IV.4. Results and discussions 176 IV.4.1. Quinoxaline dyes@ZnTiO3 interface 176 IV.4.1.1. Hydroxyl groups effect 176 IV.4.1.2. Geometry optimizations 176 IV.4.1.3. Electronic properties 178 IV.4.1.4. Optical properties 180 IV.4.1.5. Electrochemical properties 184Summary IV.4.1.5.1. Electron-injection and dye-regeneration processes 184 IV.4.1.5.2. The open circuit potential 184 IV.4.2. Polyene-diphenylaniline-based dyes@ZnTiO3 interface 186 IV.4.2.1. Donor group effect 186 IV.4.2.2. Geometry optimizations 186 IV.4.2.3. Structures of polyene-diphenylaniline-based dyes 187 IV.4.2.4. Electronic Properties 188 IV.4.2.5. Optical properties 190 IV.4.2.6. Electrochemical properties 193 IV.4.2.6.1. Electron-injection and dye-regeneration processes 193 IV.4.2.7. Dye adsorption 195 IV.4.3. Merocyanine-540 dye@ZnTiO3 interface 197 IV.4.3.1. Sensitization conditions improvement 197 IV.4.3.2. Solvents 197 IV.4.3.3. Computational and Experimental Methods 199 IV.4.3.4. Electronic Properties of Merocyanine-540 dye (MC-540) 200 IV.4.3.5. Optical and Florescence Properties 203 IV.4.3.5.1. Simulation Section 203 IV.4.3.5.2. Experimental Section 207 IV.4.3.6. The MC-540@ZnTiO3@Redox mediator interface 212 IV.4.3.6.1. The Potential Open Circuit Losses 212 IV.4.3.7. Electrochemical properties 216 IV.4.3.8. Adsorption Energy 217 IV.4.3.9. Feasibility of dye regeneration 218 IV.4.3.10. Fabrication of dye-sensitized solar cells (DSSC) 219 IV.4.3.11. Photovoltaic measurements 220 IV.5. Conclusions 222 IV. References 222 General Conclusions and Perspective |
En ligne : | http://thesis.univ-biskra.dz/6037/1/La%20these.pdf |
Disponibilité (1)
Cote | Support | Localisation | Statut |
---|---|---|---|
TPHY/128 | Théses de doctorat | bibliothèque sciences exactes | Consultable |