Titre : | Patient monitoring using computer vision and IoT |
Auteurs : | Mohamed Moncif Aoun, Auteur ; Bilal Mokhtari, Directeur de thèse |
Type de document : | Monographie imprimée |
Editeur : | Biskra [Algérie] : Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, 2022 |
Format : | 1 vol. (66 p.) / couv. ill. en coul / 30 cm |
Langues: | Français |
Sommaire : |
Contents 1 Healthcare and computer science 9 1.1 Introduction 10 1.2 Definition of health 10 1.3 Risks to human health10 1.4 The role of health care in increasing human life 11 1.5 Chronic obstructive pulmonary disease 12 1.5.1 Definition 12 1.5.2 Description 13 1.5.3 The causes of this disease . 13 1.5.4 Symptoms 14 1.5.5 Situations that require medical intervention 15 1.6 The relationship between computer science and health care 15 1.7 The role of technological development in preserving human life16 1.8 Importance of Computer in Health and Medicine 16 1.8.1 Medical Informatics 16 1.8.2 Medical Equipment 17 1.8.3 Patient Monitoring 17 1.8.4 Investigation . 17 1.8.5 Medical Informatics of Communication and Telemedicine 17 1.9 Artificial Intelligence and Health Care 17 1.9.1 Artificial Intelligence (AI) 17 1.9.2 Artificial Intelligence in Health Care . 18 1.9.3 How Artificial intelligence is changing health and health care 18 1.9.4 AI Solutions for patients and families 18 1.9.5 Health Monitoring and Risk Prediction 19 1.9.6 AI solutions for doctors . 19 1.10 conclusion 19 2 Patient monitoring 20 2.1 Introduction 21 2.2 Computer vision 21 2.2.1 Definition 21 2.2.2 Humans vision 21 2.2.3 The Visual System 22 2.2.4 History of Computer Vision 26 2.2.5 Application of Computer Vision 27 2.2.6 Computer vision fields 28 2.2.7 Some applications of computer vision28 2.3 Internet of Things (IoT) . 31 2.3.1 Definition 31 2.3.2 Objectives of IoT . 32 2.4 Rasepberry pi microcontroller 33 2.4.1 Description 33 2.4.2 Uses of Raspberry Pi 34 2.4.3 Raspberry Pi ingredients 34 2.4.4 Kinds of Raspberry Pi 35 2.5 Patient monitoring - state of the art 37 2.5.1 Different existing approaches37 2.5.2 Patient monitoring for Pulmonary disease 39 2.6 Conclusion 40 3 Conception 41 3.1 Introduction 42 3.2 System architecture 42 3.3 System work stages 43 3.3.1 Patient room to Raspberry pi 43 3.3.2 Raspberry Pi 44 3.3.3 Cloud Computing 45 3.3.4 The Coughing monitoring system through facial expressionusion 48 4 Implementation and results 49 4.1 Introduction 50 4.2 The means used 50 4.2.1 Programming language and Library 50 4.2.2 working platform 54 4.2.3 Techniques and methods 55 4.3 Results 55 4.4 Conclusion . 60 |
Disponibilité (1)
Cote | Support | Localisation | Statut |
---|---|---|---|
MINF/708 | Mémoire master | bibliothèque sciences exactes | Consultable |