Titre : | Méthodes D'estimation Paramétrique |
Auteurs : | Ahlem Haikel, Auteur ; Fatah Benatia, Directeur de thèse |
Type de document : | Monographie imprimée |
Editeur : | Biskra [Algérie] : Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, 2020 |
Format : | 1 vol. (54 p.) / ill.couv. / 30 cm |
Langues: | Français |
Mots-clés: | Convergence ; Distribution de probabilité ; Estimation ; Les moments ; Fonction de vraisemblance ; Exhaustive ; efficacité ; Maximum de vraisemblance ; Intervalle de confiance ; Paramètre ; Théorème central limite. |
Résumé : |
L'estimation consiste à donner des valeurs approchées aux paramètres inconnus liés à une population donnée en se basant sur un échantillon aléatoire extrait de cette population. Dans ce mémoire, nous présentant les différentes méthodes d'estimation telles que : l'estimation ponctuelle, la méthode des moments, celle du maximum de vraisemblance, et l'estimation par intervalle de confiance. Enfin les résultats obtenus par simulation pour les différentes méthodes citées plus haut sont présentés dans des tableaux à la fin de ce mémoire. |
Sommaire : |
Introduction
1 Notions usuelles de Probabilités et Statistiques 3 1.1 Espace Probabilisé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Dé nition de tribu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Dé nition de la probabilité : . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Variable aléatoire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Variable aléatoire discrète . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Variable aléatoire continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Distributions d'une variable aléatoire . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Définition de fonction de répartition . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.2 Dédinition de fonction densité . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.3 Moments et caractéristiques d'une variable aléatoire . . . . . . . . . . . . . . 7 1.3.4 Les lois discrètes usuelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.5 Les lois continues usuelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Les types de convergence des variables aléatoires : . . . . . . . . . . . . . . . . . . . 13 1.4.1 La convergence simple : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.2 La convergence en probabilité : . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.3 La convergence en moyenne d'ordre p : . . . . . . . . . . . . . . . . . . . . . 14 1.4.4 La convergence en loi : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.5 la convergence presque sûre : . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Qualité d'un estimateur 18 2.1 Définition d'un estimateur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Moyenne et Variance empirique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Moyenne empirique 2.2.2 Variance empirique(S2n 2.2.3 Cas d'échantillon Gaussiens . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.4 Représentation graphique de la moyenne et la variance empirique d'observa- tions uniformes et normales . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Les propriétés et caractéristiques d'un estimateur : . . . . . . . . . . . . . . . . . . 21 2.3.1 Le biais d'un estimateur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.2 Estimateur convergent : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.3 Estimateur asymptotiquement normale . . . . . . . . . . . . . . . . . . . . . 24 2.3.4 Robustesse et e¢ cacité d'un estimateur . . . . . . . . . . . . . . . . . . . . . 25 2.4 Information de Fisher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 Méthodes d'estimation paramétrique 27 |
Disponibilité (1)
Cote | Support | Localisation | Statut |
---|---|---|---|
MM/1003 | Mémoire master | bibliothèque sciences exactes | Consultable |