Titre : | Electrochemical impedance spectroscopy |
Auteurs : | Mark E. Orazem ; Bernard Tribollet |
Type de document : | Monographie imprimée |
Editeur : | Hoboken (New Jersey) [USA] : Wiley-Interscience, 2008 |
Collection : | The Electrochemical Society series |
ISBN/ISSN/EAN : | 978-0-470-04140-6 |
Format : | xxxi, 523 p. / ill. / 26 cm |
Langues: | Français |
Index. décimale : | 543.4 22 |
Catégories : |
[Agneaux] Impedance spectroscopy. |
Résumé : |
Provides fundamentals needed to apply impedance spectroscopy to a broad range of applications with emphasis on obtaining physically meaningful insights from measurements. * Emphasizes fundamentals applicable to a broad range of applications including corrosion, biomedical devices, semiconductors, batteries, fuel cells, coatings, analytical chemistry, electrocatalysis, materials, and sensors * Provides illustrative examples throughout the text that show how the principles are applied to common impedance problems * New Edition has improved pedagogy, with more than twice the number of examples * New Edition has more in-depth treatment of background material needed to understand impedance spectroscopy, including electrochemistry, complex variables, and differential equations * New Edition includes expanded treatment of the influence of mass transport and kinetics and reflects recent advances in understanding frequency dispersion and constant-phase elements |
Sommaire : |
Preface xv Acknowledgments xix The Blind Men and the Elephant xxi Flistory of linpeciance Spectroscopy xxv I Background I Complex Variables 1.1 Why Imaginary Numbers? 3 I.2 Tertninology 4 1.2.1 The Imaginary Number 4 1.2.2 Complex Variables 4 1.2.3 Conventions for Notation in Lrnpedance Speetroscopy 5 1.3 Operations Involving Complex Variables 5 1.3.1 Multiplication and Division of Complex Numbers 6 1.3.2 Complex Variables in Polar Coordinates 9 1.33 Properties of Complex Variables 13 1.4 Element-ary Functions of CompLex Variables 13 L4.1 Exponential 15 1.4.2 Logarithunic 16 1.4.3 Polynomial 19 Problerns 20 CONTENTS Differential Equations 23 7.1 L.inear First-Order Differential Equations 23 Romogeneous Linear Second-Order Differential Equations . .. Nonhomogeneous Linear Second-Order Differential Equations . 28 2.4 Partial Differen dal Equations by Sirnilarity Transformations 29 2.5 Differential Equations with Coniplex Variables 32 Prob lems 34 3 Stafistics 35 3.1 Definitions 35 3.1.1 Expectation and Mean 35 3.1.2 Variance, Standard Devia bon, and Covariance 35 3_1.3 Normal Distribution 36 11_4 Probability 38 11.5 Central-Limit Theorem 39 3.2 Error. Propagation 43 3.21 Linear Systems 43 3.2.2 N onlinear Systems 44 3.3 Ely-po th esis Tests 3.3.1 Terminology 48 3.3.2 Studenes t-Test for Equality of Mean 49 3.3.3 F-test for Equality of Variance 50 1.3.4 Chi-Squared Test for Equality of Variance ... ... 56 Problenis 58 4 Electrical Circuits 451 4,1 Passive Electrical Circuits • 61 4.1_1 Circuit Elements 61 4.1.2 Parallel and Series Combina tions 64 4.2 f undamental Relationships 66 4.3 Nested Circuits 68 4.4 Mathernatical Equivalence of Circuits 69 4.5 G ra p h ica I Represe_ntation of Circuit Response 70 Problems 72 5 Electrochemistry 73 5.1 Resistors and Electrochemical Cens 73 5.2 Equilibrium in Electrocheinical Systems 74 5.3 PolariZation Behavior for Electroehernical Systems 76 53.1 Zero Current 76 5.3:2 K inetic Control 78 5.3.3 Mass,Transfer Con trol 79 Definitions. of Po ten tial 5.5. Rate Expressions 5.5.1 Law of Mass ACtion 5.5.2 .Generalized Electrode Kinetiès 5.6 "Fransport Processes 5.6.1 Prtmary Carrent and Potential Distributions 87 5.6.2 Application to Blocking Electrodes . . . . ........ 88 5.6,3 Secondary Current and Potential Distributions 89 5.6.4 Te dia ry Carrent and Potential Distributions 90 5.6.5 lvlass-Transfer-Controlled Current Distributions ... - 5.7 POtenha I Contributions 90 5.7.1 Ohrnic Potential Drop 90 5:7.2 Surface Overp oten fiel 90 5.7.3 Concentration Ove rpoten rial 91 5.8 Capa c tance Contribu dons 91 5.8.1 Double-Layer Capacitance 91 5.8.2 Dielectric Capacitance 95 Problerns 96 6 Electrochernical Instrumentation 97 6.1 The ldea I. Opera donal Ainplitier 97 6.2 Elemen ts of Electroehernical Iris trumen ta taon 99 6.3 Electrochemical Interface 101 6.3.1 Poten tiostat 101 6.32 Gal vanosta t . ..... 102 6_3.3 Po ten tiostat for FiS Mea surement 103 n'Ob lerns. ...... 105 Il Experimental Considerations 107 7 Experimental Methods 109 7.1 Steacl y-Sta te Po larizati on Carnes 109 7.Z Transient Response to a Potential Step 109 7.3 Analysis in Frequency Domain 110 7.3.1 Lissajous knalysis 111 7.3.2 Phase-Sensitive Detection (Lock-in Amplifier) 117 7.3.3 Single-Frecjuency Fourier Analysis 119 7.3.4 Muni pie- Frequency Fourier Analysis 121 7.4 Compa tison of Mea surernent Techniq ues 122 7.4.1 Lissajous Analysis 122 7.4.2 Phase-Sensitive Detection (Lock-in Amplifier) 122 7.4.3 Single-Frequencv Fourier Analysis 123 7.4A Mulljple-Frequency FoUrier Analysis 123 7.5 Speciatized Techniques 123 7.5.1 'Fra ns fer Function Analy sis 123 7.5.2 Local Electrochernical Impedance Spectroscopy 124 Problems 128 8 Experimental Design 129 8,1 Cell Design 129 8.1.1 Reference Electrodes 129 8.1.2 Flow Configurations 13] 8.1.3 Cu Trent Distribution 132 8.2 Expe ri m en ta I Cons id era dons 133 8.2.1 Frequency Range 133 82.2 Linearity 134 8.2.3 Mod u ration Technique 146 8.2 Oscilloscope 147 8.3 Instrumentation ra ra meters 147 8,3.1 Lmprove•Signal-to-Noise Ratio 1.47 8.3,2 Redluce Biais Errors 149 8.3.3 lmprove Information Content 151 Problern_.5 152 III Process Models 153 9 Equivalent Circuit Aualogs 155 9.1 General Approach 155 9.2 Current-Addition . . ............ 156 9.2.1 Impedance at the Corrosion Potential 156 9,2.2 Pa rtially Blockecl E lectrode 157 Potential Addition 158 9.3.1 Electrocle Coated with an Inen Porous Layer 158 9.3.2 E1er trode °D'arec! with Two Inert Porous Layers 159 Problems 162 10 Kinetic Models 163 10.1 Electrodiernica Reactions 163 10.2 Reaction Dependent on Potential Only 164 10.3' Reaclion. Dependent on Potential and Mass Transfer 169 10.4 Coupleci Reactions Dependenton Potential and Surface Coverage 173 10.5 Reculions De pend ent on Po ten Surface Coverage, and Transport 176 Prob I en-is 180 11 Diffusion Itripeclance 183 11.1 Uniformly Accessible Electrode 184 11.2 General t'vlathernatica I Frarnework 185 11.3 Sbgnant Diffusion Layer . .. . .. ... 189 11.4 Diffusion through a Solid Filin . . - . . . - . . : 191 11.4.1 Region of Film Diffusion Control 191 11 4.2 Film ln-tpedance Response 194 11.5 Couple(' Diffusion Irnpedance 198 11.6 Rotating Dislc 198 11.6.1 Fluid Flow 199 11.6.2 Mass Transfer 200 11.6.3 Classification of Models for Convective Diffusion . 201 11.'7 Subtrterged In-tpinging Jet 205 11.7.1 Fluid Flow . . . . . . 206 11.7.2 Mass Transfer . . . . . • 206 11.8 Rota ring Cylinders 207 Problems 210 12 Semiconducting Systems 211 12.1 Serniconductor Pl ysits 211 12.1.1 Electrons and Fioles as Species 212 12.1.2 Doping 214 12.1.3 Deep-Leve] States . , . . . , . .......... 216 12.1.4 Shockley-Read-Hall Processes 217 12.13 Interfaces . . . . . . . . . ....... . . . ... 218 12.2 Steadv-State Models 219 12.11. Mass .Transfer 219 12.2.2 Space-Charge Region 220 12.2.3 Application to Electrolyte—Semiconductor junctions . 221 12.3 Impedance Models 223 12.3.1 Equivalent Electrical Circuits 223 12.32 Mott-Schottky Analysis 225 Problems .. . 230 13 Till-ne-Constant Dispersion . 233 11.1 Constant-Phase Elements . , . .......... • .. :233 13.1.1 2--D and 3-D Distributions 234 13.1.2 Deterrnination of Capacitance . . ....... .236 13.1.3 Limitations to the Use of the CPE 236 13.2 Con vective Diffusion lrnpedance ai Electrodes 237 13.2.1 Analysis 238 13.2.2 Local Diffusion Convective Impedance . 239 13.2.3 Global Convective Diffusion Impedance ... . . ...... 242 13.3 Geornetry-Induced Current and Potential Disttibutions 243 133.1 Ma then-ta tical Development 244 13,3.2 Global and Local Impedances 246 13.4 Porous Eleetrodes 252 13.5 Oxide Layers 260 Problems 263 14 :Generalized Transfer Functions 265 14.1 Mufti -Input/ M u I ti-Ou tp ut System.s 265 14.1.1 Current or Potential Are the Output Quantity . . . 269 14.1.2 Current or Potential Are the Input Quantity . . . 270 14.1.3 Experi mental Quantitie_s 272 142 Tra_nsfer Functions Involving Exclusively Electrical Quantifies 273 142.1 Ring-Disk Impedance Measurements . . . . . . 273 14.2.2 Multifrequency Measurements for Double-Layer Studies 275 14.3 Transfer Functions In vol ving Nonelectrica I Quantifies 278 14.3.1 Therrnoelectrochemical (TEC) Transfer Function 278 14.3.2 Photoelectrochernical Irnpedance Measurements . 282 14.3.3 F.lectrogravimetry Impedance Measurements 283 Problems 284 15 Electrohydrodynamic Impedance 285 15.1 H yd rodynamic Transfer Function 287 15.2 Mass-Transport Transfer Function 290 15.2.1 Asymptotic Solution for Large Schmidt NIumbers . 293 152.2 Asymptotic Solution for High Frequencies 294 153 Kinetic Transfer Function for Simple Electrochernical Reactions 295 15.4 interface with a 2-D or 3-D Insulating Phase ... . 296 15.4.1 Partially Blockecl Electrode 296 15.4.2 Robting Dis] Plectrode Coated by a Porous Film 299 Problems 306 IV Interpretation Strategies 307 16 Methods for Representing Impedance .309 16.1 Impedance Format 311 16.1.1 C om plex-hn ped an ce-Plane Representation 312 16.1.2 Bode Representation 314 16.1.3 El ectml yte- Resistance-Corrected Bode Representation 316 I 6.1.4 Impedance Representa bon 317 16.2 Admittance Format 319 16.2.1 Admittance-Plane Répresen ta lion 320 16.2.2 Admittance Representation 321 13.3 Geornetry-Induced Current and Potential Disttibutions 243 133.1 Ma then-ta tical Development 244 13,3.2 Global and Local Impedances 246 13.4 Porous Eleetrodes 252 13.5 Oxide Layers 260 Problems 263 14 :Generalized Transfer Functions 265 14.1 Mufti -Input/ M u I ti-Ou tp ut System.s 265 14.1.1 Current or Potential Are the Output Quantity . . . 269 14.1.2 Current or Potential Are the Input Quantity . . . 270 14.1.3 Experi mental Quantitie_s 272 142 Tra_nsfer Functions Involving Exclusively Electrical Quantifies 273 142.1 Ring-Disk Impedance Measurements . . . . . . 273 14.2.2 Multifrequency Measurements for Double-Layer Studies 275 14.3 Transfer Functions In vol ving Nonelectrica I Quantifies 278 14.3.1 Therrnoelectrochemical (TEC) Transfer Function 278 14.3.2 Photoelectrochernical Irnpedance Measurements . 282 14.3.3 F.lectrogravimetry Impedance Measurements 283 Problems 284 15 Electrohydrodynamic Impedance 285 15.1 H yd rodynamic Transfer Function 287 15.2 Mass-Transport Transfer Function 290 15.2.1 Asymptotic Solution for Large Schmidt NIumbers . 293 152.2 Asymptotic Solution for High Frequencies 294 153 Kinetic Transfer Function for Simple Electrochernical Reactions 295 15.4 interface with a 2-D or 3-D Insulating Phase ... . 296 15.4.1 Partially Blockecl Electrode 296 15.4.2 Robting Dis] Plectrode Coated by a Porous Film 299 Problems 306 IV Interpretation Strategies 307 16 Methods for Representing Impedance .309 16.1 Impedance Format 311 16.1.1 C om plex-hn ped an ce-Plane Representation 312 16.1.2 Bode Representation 314 16.1.3 El ectml yte- Resistance-Corrected Bode Representation 316 I 6.1.4 Impedance Representa bon 317 16.2 Admittance Format 319 16.2.1 Admittance-Plane Répresen ta lion 320 16.2.2 Admittance Representation 321 |
Disponibilité (1)
Cote | Support | Localisation | Statut |
---|---|---|---|
CH/267 | Livre | bibliothèque sciences exactes | Consultable |